Skip to content
Hifumi's Study Notes📕Cegep 1CalculusQuotient Rule

%% Derivative %%

Quotient Rule ​

Tags
Cegep1
Calculus
Word count
214 words
Reading time
2 minutes

Let f and g be two differentiable functions, then

ddxf(x)g(x)=g(x)f′(x)−f(x)g′(x)(g(x))2, provided g(x)≠0

Proof ​

Let q(x)=f(x)g(x), then note that

q(x+h)−q(x)=f(x+h)g(x+h)−f(x)g(x)=f(x+h)g(x)−f(x)g(x+h)g(x+h)g(x)⟹q(x+h)−q(x)h=1h⋅f(x+h)g(x)−f(x)g(x+h)g(x+h)g(x)

Now,

ddxf(x)g(x)=q′(x)=limh→0q(x+h)−q(x)h=limh→01h⋅f(x+h)g(x)−f(x)g(x+h)g(x+h)g(x)⟹=limh→01h⋅f(x+h)g(x)−f(x)g(x)+f(x)g(x)−f(x)g(x+h)g(x+h)g(x)=limh→01g(x+h)g(x)⋅f(x+h)g(x)−f(x)g(x)+f(x)g(x)−f(x)g(x+h)h=limh→01g(x+h)g(x)(f(x+h)g(x)−f(x)g(x)h+f(x)g(x)−f(x)g(x+h)h)=limh→01g(x+h)g(x)(g(x)f(x+h)−f(x)h−f(x)g(x+h)−g(x)h)=1g(x)limh→0g(x+h)(g(x)limh→0f(x+h)−f(x)h−f(x)limh→0g(x+h)−g(x)h)=1g(x)g(x)(g(x)f′(x)−f(x)g′(x))=g(x)f′(x)−f(x)g′(x)(g(x))2

â—»

Contributors

Changelog